Acta Cryst. (1998). C54, 1851-1853

Bis(triethylsulfonium) Tetraiodomercurate(II)

L. Bengtsson-Kloo, ${ }^{a}$ J. Berglund, ${ }^{a}$ H. Stegemann, ${ }^{b}$
"Inorganic Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-221 00 Lund, Sweden, ${ }^{b}$ Institute of Inorganic Chemistry, Ernst-Moritz-Armdt-University Greifswald. Soldtmannstraße 16, D-I7489 Greifswald, Germany;, and 'Inorganic Chemistry 2, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-22I 00 Lund, Sweden. E-mail: per.svensson@inorg.lu.se

(Received 23 April 1998; accepted 29 June 1998)

Abstract

The reaction of an aqueous slurry of HgI_{2} and an acetone solution of ($\left.\mathrm{Et}_{3} \mathrm{~S}\right)$ I (molar ratio 1:2) gives the title compound, $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~S}_{2}\left[\mathrm{HgI}_{4}\right]\right.$, which contains discrete pyramidal $\mathrm{Et}_{3} \mathrm{~S}^{+}$and tetrahedral HgI_{4}^{2-} ions. The bond distances of the anion ($\mathrm{Hgl}-\mathrm{Il}$ and Hgl I2) are 2.780 (1) and 2.790 (1) \AA.

Comment

The present work is part of a larger investigation of $\left(R_{3} \mathrm{~S}\right) \mathrm{I}_{x}-\mathrm{HgI}_{2}(x=1-7)$ systems. Some crystalline compounds have been synthesized and structurally characterized in a study of the effects of iodide-accepting cations on the local structure and conductivity properties of trialkylsulfonium-based polyiodide systems. $\left(\mathrm{Et}_{3} \mathrm{~S}\right)$ $\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]_{1 / 2} .3 \mathrm{I}_{2}(\mathrm{~s})$ was obtained by reaction of ($\left.\mathrm{Et}_{3} \mathrm{~S}\right) \mathrm{I}_{7}$ and HgI_{2}, and has been shown to consist of dimers of edge-sharing HgI_{4}^{2-} tetrahedra bridged by iodine molecules into a three-dimensional network (Stegemann et al., 1995). The structural anion motif of $\mathrm{Hg}_{2} \mathrm{I}_{6}^{2-}$ is also present in the I_{2}-free analogue $\left(\mathrm{Et}_{3} \mathrm{~S}\right)\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]_{1 / 2}$ (s) (Bengtsson et al., 1995). The crystal structure of the corresponding trimethylsulfonium compound, $\left(\mathrm{Me}_{3} \mathrm{~S}\right)$ [HgI_{3}], on the other hand, has already been shown to consist of trigonal HgI_{3}^{-}units stacked into onedimensional chains (Fenn, 1966a). Fenn (1966b) also determined the crystal structure of $\left(\mathrm{Me}_{3} \mathrm{~S}\right)_{2}\left[\mathrm{HgI}_{4}\right]$. The crystal structure of $\left(\mathrm{Et}_{3} \mathrm{~S}\right)_{2}\left[\mathrm{HgI}_{4}\right]$, (I), is presented here in order to clarify whether structural effects on the anion similar to those observed for the triiodomercurate compounds are caused by cation exchange. The analogous

(I)
cadmium compound, $\left(\mathrm{Et}_{3} \mathrm{~S}_{2}\left[\mathrm{CdI}_{4}\right]\right.$, is isostructural with the title compound (Bengtsson-Kloo et al., 1996).
The title compound consists of discrete pyramidal $\mathrm{Et}_{3} \mathrm{~S}^{+}$cations and tetrahedral HgI_{4}^{2-} anions. Selected distances and angles are listed in Table 2. The intramolecular structural parameters of the $\mathrm{Et}_{3} \mathrm{~S}^{+}$cation in $\left(\mathrm{Et}_{3} \mathrm{~S}_{2} \mathrm{Hgl}_{4}(\mathrm{~s})\right.$ correspond well with previous results for ($\mathrm{Et}_{3} \mathrm{~S}_{2}\left[\mathrm{CdI}_{4}\right]$ (Bengtsson-Kloo et al., 1996), $\left(\mathrm{Et}_{3} \mathrm{~S}\right)\left[\mathrm{Hg}_{2} \mathrm{I}_{6} \mathrm{l}_{1 / 2}\right.$ (s) (Bengtsson et al., 1995) and $\left(\mathrm{Et}_{3} \mathrm{~S}\right)$ $\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]_{1 / 2} .3 \mathrm{I}_{2}$ (s) (Stegemann et al., 1995). The two orientations found for each ethyl group (Fig. 1) coincide at the terminal C atom. The occupancies are 0.63 (2) and 0.37 (2) for the two orientations. The corresponding occupancies in the isostructural cadmium compound were 0.65 (2) and 0.35 (2). The cation-anion arrangement was described as a distorted anti-fluorite-type structure (Bengtsson-Kloo et al., 1996). It is also similar to that in $\left(\mathrm{Et}_{3} \mathrm{~S}\right)\left[\mathrm{Hg}_{2} \mathrm{I}_{6}\right]_{1 / 2}$, where the S atoms of the triethylsulfonium cations are positioned above the faces of the tetraiodometallate(II) tetrahedra. Also, the I \cdots S distances are of the same magnitude ($4.0-5.5 \AA$) and indicate that the cation-anion interactions are predominantly of the electrostatic and van der Waals types (Bengtsson et al., 1995). Furthermore, the structure of $\left(\mathrm{Et}_{3} \mathrm{~S}_{2}\left[\mathrm{HgI}_{4}\right]\right.$ is very similar to that of $\left(\mathrm{Me}_{3} \mathrm{~S}\right)_{2}\left[\mathrm{HgI}_{4}\right]$ (Fenn, 1966b) and no cation-induced structural differences similar to those observed in the corresponding triiodomercurate systems can thus be identified. The tetrahedral HgI_{4}^{2} complex is probably one of the most well known coordination compounds and it represents an archetype of an inorganic Werner-type complex. The $M I_{4}^{2-}$ fragments have been observed as isolated tetrahedra both in solution and the solid state (see Table 3), as edge-sharing tetrahedra in $\mathrm{Hg}_{2} \mathrm{I}^{2-}$ [recently reviewed by Bengtsson et al. (1995)], as well as corner-sharing tetrahedra in $\mathrm{Hg}_{2} \mathbf{7}_{7}^{\mathbf{3}^{3}}$ dimers and extended layers of tetrahedra, with ion-conducting materials such as $\mathrm{M}_{2} \mathrm{HgI}_{4}$ being typical examples ($M=\mathrm{Ag}, \mathrm{Cu}, \mathrm{In}$ or Tl). The average $\mathrm{Hg}-\mathrm{I}$ distances in compounds with isolated HgI_{4}^{2-} tetrahedra are typically similar to those observed in this study [2.780 (1) and 2.790 (1) \AA].

Fig. 1. The molecular structure of the $\mathrm{Et}_{3} \mathrm{~S}^{+}$cation showing 50% probability displacement ellipsoids.

Experimental

Bis(triethylsulfonium) tetraiodomercurate(II) was prepared by mixing stoichiometric amounts of an aqueous slurry of HgI_{2} (Merck, p.a. grade) with an acetone solution of triethylsulfonium iodide to give a pale-yellow solution. Single crystals were grown by slow evaporation. ($\mathrm{Et}_{3} \mathrm{~S}$)I was prepared by alkylation of $\mathrm{Et}_{2} \mathrm{~S}$ by EtI in chloroform and then purified by recrystallization from hot ethanol before use.

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~S}\right)_{2}\left[\mathrm{HgI}_{4}\right]$
$M_{r}=946.71$
Tetragonal
I4 $/ a$
$a=13.903$ (1) \AA
$c=25.963(3) \AA$
$V=5018(1) \AA^{3}$
$Z=8$
$D_{x}=2.506 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Huber diffractometer ω scans with profile analysis
Absorption correction:
Gaussian integration
(Coppens et al., 1965)
$T_{\text {min }}=0.095, T_{\text {max }}=0.156$
2290 measured reflections
2290 independent reflections

Refinement

Refinement on F
$R=0.037$
$w R=0.048$
$S=1.633$
1351 reflections
85 parameters
H atoms not located
Weighting scheme based
on measured s.u.'s;
$w=4 F_{o}^{2} / \sigma^{2}\left(F_{o}^{2}\right)$
$(\Delta / \sigma)_{\text {max }}=0.060$
$\Delta \rho_{\text {max }}=0.82 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.71 \mathrm{e}^{-3}$
Extinction correction: Zachariasen (1968) type 2 Gaussian isotropic
Extinction coefficient: 2.02×10^{-8}
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {cq }}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	\because	こ	$U_{\text {e4 }}$
Hg 1	0	1/4	5/8	0.0512
Hg 2	0	1/4	1/8	0.0484
11	0.01132 (8)	0.08 .367 (7)	$0.56589(4)$	0.0710
12	0.04904 (7)	0.09454 (6)	0.06233 (4)	0.0643
S1	0.2744 (2)	0.1806 (2)	0. 4656 (1)	0.0605
Clat	0.307 (2)	0.140 (2)	0.531 (1)	$0.080(8)$
Clb \ddagger	0.253 (3)	0.210 (3)	0.535 (2)	0.09 (1)
C2	0.365 (1)	0.215 (1)	0.5594 (7)	0.1061
C3a \dagger	0.199 (2)	0.081 (2)	0.442 (1)	0.079 (8)
C3b \ddagger	0.258 (3)	0.053 (3)	0.474 (2)	0.08 (1)
C4	0.270 (1)	$-0.002(1)$	0.4312 (10)	0.1116

C5 $5 \dagger$	$0.184(2)$	$0.275(2)$	$0.483(1)$	$0.074(8)$
C5b \ddagger	$0.150(4)$	$0.205(4$	$0.430(2)$	$0.10(1)$
C6	$0.143(1)$	$0.312(1)$	$0.4297(7)$	0.1134

\dagger Site occupancy $=0.631(19) . \quad \ddagger$ Site occupancy $=0.369$ (19).
Table 2. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

Hgl-II	2.7799 (9)	Clb-C2	1.68 (5)
Hg2-12	2.7899 (9)	$\mathrm{Cla}-\mathrm{Cl}{ }^{\text {b }}$	1.23 (5)
SI-Cla	1.83 (3)	C3a-C4	1.54 (3)
Si -C1b	1.87 (5)	C3 3 -C4	1.36 (5)
S1-C3a	1.83 (3)	$\mathrm{C} 3 \mathrm{a}-\mathrm{C} 3 b$	1.23 (5)
S1-C3b	1.80 (5)	C5a-C6	1.58 (3)
S1-C5a	1.87 (2)	$\mathrm{C5}$ b-C6	1.49 (5)
S1-C5b	2.00 (5)	C5a-C5b	1.75 (6)
$\mathrm{Cla}-\mathrm{C}_{2}$	1.51 (3)		
$11-\mathrm{HgI}-11^{\prime}$	112.98 (5)	$\mathrm{C} 3 \mathrm{a}-\mathrm{SI}-\mathrm{C} 5 a$	102(1)
$11-\mathrm{Hgl}-\mathrm{ll}{ }^{11}$	107.74 (2)	$\mathrm{C} 3 \mathrm{~b}-\mathrm{S} 1-\mathrm{C} 5 b$	$96(2)$
$11^{\prime \prime}-\mathrm{Hg} 1-1^{\prime \prime}$	112.98 (5)	$\mathrm{S} 1-\mathrm{Cla}-\mathrm{C} 2$	112(1)
12-Hg2-121	108.65 (4)	$\mathrm{Si}-\mathrm{Cl}$ - C 2	102(2)
12-Hg2- ${ }^{2}$	109.88 (2)	S1-C3a-C4	105 (1)
$\mathrm{Cla}-\mathrm{SI}-\mathrm{C} 3 \mathrm{a}$	102 (1)	SI-C3b-C4	115 (3)
$\mathrm{Cla} \mathrm{Si}-\mathrm{Csa}$	99 (1)	SI-C5a-C6	105 (1)
$\mathrm{C} 16-\mathrm{SI}-\mathrm{C} 3 b$	94 (2)	S1-C5h-C6	103 (2)
Clb-S1-C5b	$106(1)$		
Symmetry codes: (i) $-x, \frac{1}{2}-y, z:$ (ii) $y-\frac{1}{4}, \frac{1}{4}-x, \frac{5}{4}-z$ (iii $\frac{1}{4}-y, \frac{1}{4}+x, \frac{5}{4}-z$ (iv) $\frac{1}{4}-y, \frac{1}{4}+x, \frac{1}{4}-z$.			

Table 3. Average $H-I$ bond distances (\AA) of some isolated HgI_{4}^{2-} ions

$\mathrm{Hgl}_{4}^{2-}(\mathrm{aq})^{\text {a }}$	2.78	$\left(\mathrm{CH}_{6} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{HgL}_{4} \mathrm{~J}(\mathrm{~s})^{\text {h }}\right.$	2.78
$\mathrm{Hg} \mathrm{l}_{1}^{2-}$ (DMSO$)^{\prime \prime}$	2.79	$\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~S}_{2}\left(\mathrm{Hgl}_{4}\right](\mathrm{s})^{4}\right.$	2.73
Hgl^{3-} (DMSO) ${ }^{\text {c }}$	2.79	$\left(\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~S}\right)_{2}\left(\mathrm{HgI}_{4}\right)(\mathrm{s})^{\prime}$	2.79
	2.80	$\mathrm{Ca}\left[\mathrm{HgI}_{4}\right] .8 \mathrm{H}_{2} \mathrm{O}(5)^{h}$	2.80
$\mathrm{Hg} 1_{i}^{+}(\mathrm{DMF})^{h}$	2.80	$\left.\mathrm{Sr} \mid \mathrm{HeL}_{4}\right\rceil$. $8 \mathrm{H}_{2} \mathrm{O}(5)^{h}$	2.78
$\mathrm{Hel}_{4}^{-}{ }^{-}$(DMF) ${ }^{-}$	2.80	$\mathrm{C}_{6}(\mathrm{OH})_{1-} \mathrm{N}_{1 \times} \mathrm{O}_{14} \mathrm{~S}_{12}-$	
	2.82	$\left.\left[\mathrm{Hg}_{3} \mathrm{I}_{10}\right] \mid\left[\mathrm{HgL}_{4}\right]_{(s)}\right)^{\prime}$	2.83
$\mathrm{Cs}_{2}\left[\mathrm{HgI}_{4}\right](\mathrm{s})^{f}$	2.78	$\left(\mathrm{Me}_{3} \mathrm{PCH}_{2} \mathrm{CN}\right)_{2}\left(\mathrm{HgI}_{4}\right](\mathrm{s})^{m}$	2.82
$\left.\left(\mathrm{Cs}_{3} \mathrm{f}\right) \mathrm{Hgl}_{4}\right](\mathrm{s})^{2}$	2.77	$\left(\mathrm{Me}_{3} \mathrm{PCH}_{2} \mathrm{CN}\right)_{2}\left\|\mathrm{HgI}_{4}\right\|(s)^{m}$	2.79
$\left(\mathrm{Cs}_{3} \mathrm{I}\right)\left(\mathrm{Hgl}_{4}\right)(\mathrm{s})^{f}$	2.77		

References: (a) Sandström \& Johansson (1977); (b) Gaizer \& Johansson (1968): (c) Gaizer \& Johansson (1969): (d) Sandström (1978); (e) Pakhomov \& Fedorov (1973); (f) Sjövall \& Svensson (1988): (g) Fedorov et al. (1975): (h) Körfer et al. (1986): (i) Fenn (1966b): (j) this work: (k) Thiele et al. (1982); (l) Cramer \& Carrić (1990): (m) Bellamy et al. (1981).

The intensities decreased by an average of 0.44% during the data collection. The values of I and $\sigma(I)$ were corrected for Lorentz, polarization and absorption effects. The Laue group is $4 / m$ and systematic extinctions ($h k l: h+k+l \neq$ $2 n ; h k 0: \mathrm{h} \neq 2 n ; 00 l: l \neq 4 n$) are consistent with space group $I 4_{1} / a$ (No. 88), which was verified by the statistical analysis of intensity distribution, packing considerations and the successful refinement of the structure.

Data collection: local software. Cell refinement: local software. Data reduction: PREPROCESS and PROCESS in TEXSAN (Molecular Structure Corporation, 1993). Program(s) used to solve structure: MITHRIL in TEXSAN. Program(s) used to refine structure: $L S$ in TEXSAN. Software used to prepare material for publication: FINISH in TEXSAN.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1033). Services for accessing these data are described at the back of the journal.

References

Bellamy. A. J.. Gould. R. O. \& Walkinshaw. M. D. (1981). J. Chem. Soc. Perkin Trans. 2. pp. 1099-1104.
Bengtsson. L. A.. Norén. B. \& Stegemann. H. (1995). Acta Chem. Scand. 49. 391-398.
Bengtsson-Kloo. L... Berglund. J., Stegemann. H.. Svensson. C. \& Svensson, P. H. (1996). Acta Cṇst. C52, 3045-3047.
Coppens, P.. Leiserowitz. L. \& Rabinovich. D. (1965). Acta Cnst. 18. 1035-10)38.
Cramer. R. E. \& Carrić. M. J. J. (1990). Inorg. Chem. 29. 390)2-3914.
Fedorov. P. M.. Pakhomov. V. I. \& Ivanova-Korfini. I. N. (1975). Koorl. Khim. 1. 1569-1574.
Fenn. R. H. (1966a). Acta Crnst. C20, 2()-24.
Fenn. R. H. (1966b). Acta Cŗst. C20. 24-27.
Gaizer, F. \& Johansson. G. (1968). Acta Chem. Scand. 22. 3013-3022.
Gaizer, F. \& Johansson. G. (1969). Magy. Kem. Foly. 75, 553-559.
Körler. M.. Fuess. H. \& Bats. J. W. (1986). Z. Anorg. Allg. Chem. 543. 1()4-110.

Molecular Structure Corporation (1993). TEXSAN. Single Cristal Structure Analysis Softuare. Version 1.6. MSC. 320) Research Forest Drive. The Woodlands. TX 77381. USA.
Pakhomov, V. I. \& Fedorov: P. M. (1973). Kristallografica. 17. 942948.

Sandström. M. (1978). Acta Chem. Scand. Ser. A. 32, 627-641.
Sandström. M. \& Johansson. G. (1977). Acta Chem. Scand. Ser. A. 31. 132-140).

Sjövall, R. \& Svensson. C. (1988). Acta Cṇ̂st. C44, 207-210.
Stegemann. H.. Tebbe. K.-F. \& Bengtsson. L. A. (1995). Z. Anorg. Allg. Chem. 621, 165-170.
Thiele. G.. Brodersen. K. \& Pezzei, G. (1982). Z. Anorg. Allg. Chem. 491. 308-318.

Zachariasen. W. H. (1968). Acta Crist. A24. 212-216.

Acta Cryst. (1998). C54, 1853-1855

Aqua(diethylenetriamine)(isonicotinato)copper(II) Hexafluorophosphate

Feng-Mei Nie," Zhe-Ming Wang,, ${ }^{h}$ Yan-Mei Li," Yu-Fen Zhao" and Chlin-Hua Yan"
"Bio-organic Phosphorus Chemistry Laboratory; Department of Chemistry: Tsinghua University, Beijing 100084, People's Republic of China, and "State Key Laboratony of Rare Earth Materials Chemistry and Applications, Department of Chemistry, Peking University, Beijing 100871, People's
Republic of China. E-mail: tp-dch@mail.tsinghua.edu.cn

(Received 6 January 1998: accepted 4 August 1998)

Abstract

The Cu atom in the title complex, [N-(2-amino-ethyl- N)-1,2-ethylenediamine- N, N^{\prime}]aqua(4-pyridinecarboxylato $-N$)copper(II) hexafluorophosphate, $[\mathrm{Cu}-$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)\left(\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{PF}_{6}$, is coordinated in a square-pyramidal arrangement by three N atoms
of N -(2-aminoethyl)-1,2-ethylenediamine (diethylenetriamine) and one N atom from the pyridine ring of isonicotinate in equatorial positions, and by one water molecule in an axial position.

Comment

Isonicotinate is a ligand with two types of binding site. It can coordinate with transition metal ions via one or two O atoms from the carboxylate group or the N atom from the pyridine ring. Only a few structures containing copper(II) and isonicotinate have been reported (Okabe et al., 1993). In the course of our systematic study of the coordination mode of isonicotinate with copper(II) in mixed-ligand systems, we isolated the complex [$\mathrm{Cu}-$ (dien)(iso) $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{PF}_{6}$, (I), where dien is diethylenetriamine and iso is isonicotinate. We report here its preparation and structure.

(I)

The crystal structure of (I) comprises discrete $\left[\mathrm{Cu}(\text { dien })(\text { iso })\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$cations and hexafluorophosphate anions (Fig. 1). The coordination polyhedron of the Cu atom is a square pyramid whose base is formed by three N atoms from the amine ligand and one pyridine N atom from isonicotinate. A coordinated water molecule occupies the apex of the pyramid with a $\mathrm{Cu}-\mathrm{O}$ distance of 2.316 (2) \AA. The Cu atom lies 0.199 (1) \AA above the mean plane defined by the four basal N atoms. This is in good agreement with the situation found in most square-pyramidal structures where the Cu atom is lifted ca 0.2 A towards the apex of the pyramid (Hathaway \& Billing, 1970). The $\mathrm{Cu}-\mathrm{N}$ bond lengths to dien fall in the range $2.005(2)-2.017$ (2) \AA. Among these, that from the Cu atom to the secondary N atom of the amine ligand is the shortest, as was found by Sato et al. (1986) and Hu et al. (1997). The Cu to pyridine $\mathrm{N}(\mathrm{Cu}-\mathrm{N} 1)$ bond length is 2.016 (2) \AA. This is comparable to the $\mathrm{Cu}-\mathrm{N}_{\mathrm{iso}}$ bond length found in the square-planar coordinated $\mathrm{Cu}{ }^{\text {II }}$ complex $\left[\mathrm{Cu}(\text { iso })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}(2.004 \AA$; Okabe et al., 1993). The dihedral angle between the pyridine ring plane and the basal plane of the square pyramid is $61.49(7)^{\circ}$. The hexafluorophosphate anion is below the square pyramid and F 1 is close to the Cu atom at a distance of $2.969(2) \AA$. An extensive hydrogenbonding network is present in the crystal, with hydro-

