Acta Cryst. (1998). C54, 1851–1853

Bis(triethylsulfonium) Tetraiodomercurate(II)

L. BENGTSSON-KLOO,^{*a*} J. BERGLUND,^{*a*} H. STEGEMANN,^{*b*} C. SVENSSON^{*c*} AND PER H. SVENSSON^{*a*}

^aInorganic Chemistry 1, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-221 00 Lund, Sweden, ^bInstitute of Inorganic Chemistry, Ernst-Moritz-Arndt-University Greifswald, Soldtmannstraße 16, D-17489 Greifswald, Germany, and ^cInorganic Chemistry 2, Center for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-221 00 Lund, Sweden. E-mail: per.svensson@inorg.lu.se

(Received 23 April 1998; accepted 29 June 1998)

Abstract

The reaction of an aqueous slurry of HgI_2 and an acetone solution of $(Et_3S)I$ (molar ratio 1:2) gives the title compound, $[(C_2H_5)_3S]_2[HgI_4]$, which contains discrete pyramidal Et_3S^+ and tetrahedral HgI_4^{2-} ions. The bond distances of the anion (HgI-II) and HgI-I2) are 2.780(1) and 2.790(1) Å.

Comment

The present work is part of a larger investigation of $(R_3S)I_x$ -HgI₂ (x = 1-7) systems. Some crystalline compounds have been synthesized and structurally characterized in a study of the effects of iodide-accepting cations on the local structure and conductivity properties of trialkylsulfonium-based polyiodide systems. (Et₃S)- $[Hg_2I_6]_{1/2}$.3I₂(s) was obtained by reaction of $(Et_3S)I_7$ and HgI₂, and has been shown to consist of dimers of edge-sharing HgI_4^{2-} tetrahedra bridged by iodine molecules into a three-dimensional network (Stegemann et al., 1995). The structural anion motif of $Hg_2I_6^{2-}$ is also present in the I_2 -free analogue (Et₃S)[Hg₂I₆]_{1/2}(s) (Bengtsson et al., 1995). The crystal structure of the corresponding trimethylsulfonium compound, (Me₃S)- $[HgI_3]$, on the other hand, has already been shown to consist of trigonal HgI₃⁻ units stacked into onedimensional chains (Fenn, 1966a). Fenn (1966b) also determined the crystal structure of $(Me_3S)_2[HgI_4]$. The crystal structure of $(Et_3S)_2[HgI_4]$, (I), is presented here in order to clarify whether structural effects on the anion similar to those observed for the triiodomercurate compounds are caused by cation exchange. The analogous

© 1998 International Union of Crystallography Printed in Great Britain – all rights reserved

cadmium compound, $(Et_3S)_2[CdI_4]$, is isostructural with the title compound (Bengtsson-Kloo *et al.*, 1996).

The title compound consists of discrete pyramidal Et_3S^+ cations and tetrahedral HgI_4^{2-} anions. Selected distances and angles are listed in Table 2. The intramolecular structural parameters of the Et₃S⁺ cation in (Et₃S)₂HgI₄(s) correspond well with previous results for (Et₃S)₂[CdI₄] (Bengtsson-Kloo et al., 1996), $(Et_3S)[Hg_2I_6]_{1/2}(s)$ (Bengtsson *et al.*, 1995) and (Et_3S) - $[Hg_2I_6]_{1/2}$.3I₂(s) (Stegemann *et al.*, 1995). The two orientations found for each ethyl group (Fig. 1) coincide at the terminal C atom. The occupancies are 0.63(2) and 0.37(2) for the two orientations. The corresponding occupancies in the isostructural cadmium compound were 0.65(2) and 0.35(2). The cation-anion arrangement was described as a distorted anti-fluorite-type structure (Bengtsson-Kloo et al., 1996). It is also similar to that in $(Et_3S)[Hg_2I_6]_{1/2}$, where the S atoms of the triethylsulfonium cations are positioned above the faces of the tetraiodometallate(II) tetrahedra. Also, the $I \cdots S$ distances are of the same magnitude (4.0-5.5 Å) and indicate that the cation-anion interactions are predominantly of the electrostatic and van der Waals types (Bengtsson et al., 1995). Furthermore, the structure of $(Et_3S)_2[HgI_4]$ is very similar to that of (Me₃S)₂[HgI₄] (Fenn, 1966b) and no cation-induced structural differences similar to those observed in the corresponding triiodomercurate systems can thus be identified. The tetrahedral HgI_4^2 complex is probably one of the most well known coordination compounds and it represents an archetype of an inorganic Werner-type complex. The MI_4^{2-} fragments have been observed as isolated tetrahedra both in solution and the solid state (see Table 3), as edge-sharing tetrahedra in $Hg_2I_6^{2-}$ [recently reviewed by Bengtsson et al. (1995)], as well as corner-sharing tetrahedra in $Hg_2I_7^{3-}$ dimers and extended layers of tetrahedra, with ion-conducting materials such as M_2 HgI₄ being typical examples (M = Ag, Cu, In or Tl). The average Hg—I distances in compounds with isolated HgI_4^{2-} tetrahedra are typically similar to those observed in this study [2.780(1) and 2.790(1) Å].

Fig. 1. The molecular structure of the Et₃S⁺ cation showing 50% probability displacement ellipsoids.

$(C_6H_{15}S)_2[HgI_4]$

Experimental

Bis(triethylsulfonium) tetraiodomercurate(II) was prepared by mixing stoichiometric amounts of an aqueous slurry of HgI_2 (Merck, p.a. grade) with an acetone solution of triethylsulfonium iodide to give a pale-yellow solution. Single crystals were grown by slow evaporation. (Et₃S)I was prepared by alkylation of Et₂S by EtI in chloroform and then purified by recrystallization from hot ethanol before use.

Crystal data

$(C_6H_{15}S)_2[HgI_4]$	Mo $K\alpha$ radiation
$M_r = 946.71$	$\lambda = 0.7107 \text{ Å}$
Tetragonal	Cell parameters from 47
$I4_1/a$	reflections
a = 13.903(1) Å	$\theta = 19 - 38^{\circ}$
c = 25.963(3) Å	$\mu = 11.16 \text{ mm}^{-1}$
$V = 5018 (1) \text{ Å}^3$	T = 295 K
Z = 8	Tetragonal bipyramid
$D_x = 2.506 \text{ Mg m}^{-3}$	$0.29 \times 0.28 \times 0.28$ mm
D_m not measured	Yellow

Data collection

Huber diffractometer	1351 reflections with
ω scans with profile analysis	$I \geq 3\sigma(I)$
Absorption correction:	$\theta_{\rm max} = 25^{\circ}$
Gaussian integration	$h = 0 \rightarrow 16$
(Coppens et al., 1965)	$k = 0 \rightarrow 16$
$T_{\rm min} = 0.095, T_{\rm max} = 0.156$	$l = 0 \rightarrow 30$
2290 measured reflections	3 standard reflections
2290 independent reflections	frequency: 90 min
-	intensity decay: 0.44%

Refinement

Refinement on F R = 0.037 wR = 0.048 S = 1.633 1351 reflections 85 parameters H atoms not located Weighting scheme based on measured s.u.'s; $w = 4F_{\rho}^{2}/\sigma^{2}(F_{\rho}^{2})$	$\Delta \rho_{\text{max}} = 0.82 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.71 \text{ e } \text{\AA}^{-3}$ Extinction correction: Zachariasen (1968) type 2 Gaussian isotropic Extinction coefficient: 2.02 × 10 ⁻⁸ Scattering factors from Inter- national Tables for X-ray Crystallography (Vol. IV)
$w = 4F_o^2/\sigma^2(F_o^2)$ $(\Delta/\sigma)_{\text{max}} = 0.060$	Crystallography (Vol. IV)
() /	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

	U_{eq}	$= (1/3) \sum_i \sum_j U^{ij}$	$a^i a^j \mathbf{a}_i \cdot \mathbf{a}_j$.	
	x	v	Ξ	U_{eq}
Hgl	0	1/4	5/8	0.0512
Hg2	0	1/4	1/8	0.0484
11	0.01132 (8)	0.08367(7)	0.56589(4)	0.0710
12	0.04904 (7)	0.09454 (6)	0.06233 (4)	0.0643
S1	0.2744 (2)	0.1806(2)	0.4656(1)	0.0605
Clat	0.307(2)	0.140(2)	0.531(1)	0.080 (8)
C1 <i>b</i> ‡	0.253 (3)	0.210(3)	0.535(2)	0.09(1)
C2	0.365(1)	0.215(1)	0.5594 (7)	0.1061
C3a†	0.199(2)	0.081(2)	0.442(1)	0.079 (8)
C36‡	0.258 (3)	0.053 (3)	0.474 (2)	0.08(1)
C4	0.270(1)	-0.002(1)	0.4312 (10)	0.1116

C5a†	0.184 (2)	0.275(2)	().483(1)	0.074 (8)
C5b‡	0.150 (4)	0.205 (4	0.430(2)	0.10(1)
C6	0.143(1)	0.312(1)	0.4297 (7)	0.1134

 \ddagger Site occupancy = 0.631 (19). \ddagger Site occupancy = 0.369 (19).

Table 2. Selected geometric parameters (Å, °)

Hg1—[]	2.7799 (9)	C1b-C2	1.68 (5)
Hg2—12	2.7899 (9)	Cla-Clb	1.23 (5)
SI-Cla	1.83(3)	C3a-C4	1.54 (3)
S1C1b	1.87 (5)	C3 <i>b</i> —C4	1.36(5)
S1C3a	1.83 (3)	C3a - C3b	1.23 (5)
S1-C3b	1.80 (5)	C5aC6	1.58 (3)
S1C5a	1.87 (2)	C5bC6	1.49 (5)
S1C5b	2.00 (5)	C5a—C5b	1.75(6)
C1aC2	1.51 (3)		
11—Hg1—11'	112.98 (5)	C3a—S1—C5a	102(1)
11-Hg1-11"	107.74 (2)	C3b—S1—C5b	96(2)
11"-Hg1-H"	112.98 (5)	S1-C1a-C2	112(1)
12—Hg2—121	108.65 (4)	\$1-C1b-C2	102(2)
12—Hg2—12"	109.88 (2)	S1-C3a-C4	105(1)
Cla—Sl—C3a	102(1)	S1-C3b-C4	115 (3)
Cla—Sl—C5a	99(1)	S1—C5a—C6	105(1)
C1b-S1-C3b	94 (2)	S1C5 <i>b</i> C6	103(2)
C1b—S1—C5b	106(1)		
~			

Symmetry codes: (i) $-x, \frac{1}{2} - y, z$; (ii) $y - \frac{1}{4}, \frac{1}{4} - x, \frac{5}{4} - z$; (iii) $\frac{1}{4} - y, \frac{1}{4} + x, \frac{5}{4} - z$; (iv) $\frac{1}{4} - y, \frac{1}{4} + x, \frac{1}{4} - z$.

Table 3. Average H—I bond distances (Å) of some isolated HgI_{4}^{2-} ions

$HgI_4^{2-}(aq)^a$	2.78	$(CH_6N)_2[HgI_4](s)^h$	2.78
Hgl ² ⁻ (DMSO) ^b	2.79	$(C_3H_9S)_2[Hgl_4](s)'$	2.73
Hgl ² (DMSO)	2.79	$(C_6H_{15}S)_2[HgI_4](s)^{1/2}$	2.79
Hgli (DMSO) ^d	2.80	$Ca[HgI_4].8H_2O(s)^k$	2.80
Hgl‡ (DMF) ^h	2.80	$Sr[HgI_4].8H_2O(s)^k$	2.78
HgI ² − (DMF) ^C	2.80	C ₆ (OH) ₁₂ N ₁₈ O ₁₄ S ₁₂ -	
$Cs_2[Hgl_4](s)^{\ell}$	2.82	[Hg ₃ I ₁₀][HgL ₁](s) [/]	2.83
Cs ₂ [HgI ₄](s) [/]	2.78	$(Me_3PCH_2CN)_2[HgI_4](s)^m$	2.82
(Cs ₃ ł)[Hgl ₄](s) ^g	2.77	(Me ₃ PCH ₂ CN) ₂ [HgI ₄](s) ^m	2.79
$(Cs_3I)[HgI_4](s)^{f}$	2.77		

References: (a) Sandström & Johansson (1977); (b) Gaizer & Johansson (1968); (c) Gaizer & Johansson (1969); (d) Sandström (1978); (e) Pakhomov & Fedorov (1973); (f) Sjövall & Svensson (1988); (g) Fedorov et al. (1975); (h) Körfer et al. (1986); (i) Fenn (1966b); (j) this work; (k) Thiele et al. (1982); (l) Cramer & Carrié (1990); (m) Bellamy et al. (1981).

The intensities decreased by an average of 0.44% during the data collection. The values of l and $\sigma(l)$ were corrected for Lorentz, polarization and absorption effects. The Laue group is 4/m and systematic extinctions $(hkl: h+k+l \neq 2n; hk0: h \neq 2n; 00l: l \neq 4n)$ are consistent with space group $I4_1/a$ (No. 88), which was verified by the statistical analysis of intensity distribution, packing considerations and the successful refinement of the structure.

Data collection: local software. Cell refinement: local software. Data reduction: *PREPROCESS* and *PROCESS* in *TEXSAN* (Molecular Structure Corporation, 1993). Program(s) used to solve structure: *MITHRIL* in *TEXSAN*. Program(s) used to refine structure: *LS* in *TEXSAN*. Software used to prepare material for publication: *FINISH* in *TEXSAN*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS1033). Services for accessing these data are described at the back of the journal.

References

- Bellamy, A. J., Gould, R. O. & Walkinshaw, M. D. (1981). J. Chem. Soc. Perkin Trans. 2, pp. 1099–1104.
- Bengtsson, L. A., Norén, B. & Stegemann, H. (1995). Acta Chem. Scand. 49, 391–398.
- Bengtsson-Kloo, L., Berglund, J., Stegemann, H., Svensson, C. & Svensson, P. H. (1996). Acta Cryst. C52, 3045–3047.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.
- Cramer, R. E. & Carrié, M. J. J. (1990). Inorg. Chem. 29, 3902-3914.
- Fedorov, P. M., Pakhomov, V. I. & Ivanova-Korfini. I. N. (1975). Koord. Khim. 1, 1569–1574.
- Fenn, R. H. (1966a). Acta Cryst. C20, 20-24.
- Fenn, R. H. (1966b). Acta Cryst. C20, 24-27.
- Gaizer, F. & Johansson, G. (1968). Acta Chem. Scand. 22, 3013-3022.
- Gaizer, F. & Johansson, G. (1969). Magy. Kem. Foly. 75, 553-559.
- Körfer, M., Fuess, H. & Bats, J. W. (1986). Z. Anorg. Allg. Chem. 543, 104–110.
- Molecular Structure Corporation (1993). *TEXSAN. Single Crystal Structure Analysis Software*. Version 1.6. MSC, 3200 Research Forest Drive. The Woodlands, TX 77381, USA.
- Pakhomov, V. I. & Fedorov, P. M. (1973). Kristallografiya, 17, 942–948.
- Sandström, M. (1978). Acta Chem. Scand. Ser. A, 32, 627-641.
- Sandström, M. & Johansson, G. (1977). Acta Chem. Scand. Ser. A, 31, 132–140.
- Sjövall, R. & Svensson, C. (1988). Acta Cryst. C44, 207-210.
- Stegemann, H., Tebbe, K.-F. & Bengtsson, L. A. (1995). Z. Anorg. Allg. Chem. 621, 165–170.
- Thiele, G., Brodersen, K. & Pezzei, G. (1982). Z. Anorg. Allg. Chem. 491, 308–318.
- Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

of N-(2-aminoethyl)-1,2-ethylenediamine (diethylenetriamine) and one N atom from the pyridine ring of isonicotinate in equatorial positions, and by one water molecule in an axial position.

Comment

Isonicotinate is a ligand with two types of binding site. It can coordinate with transition metal ions *via* one or two O atoms from the carboxylate group or the N atom from the pyridine ring. Only a few structures containing copper(II) and isonicotinate have been reported (Okabe *et al.*, 1993). In the course of our systematic study of the coordination mode of isonicotinate with copper(II) in mixed-ligand systems, we isolated the complex [Cu-(dien)(iso)(H₂O)]PF₆, (I), where dien is diethylenetriamine and iso is isonicotinate. We report here its preparation and structure.

Acta Cryst. (1998). C54, 1853-1855

Aqua(diethylenetriamine)(isonicotinato)copper(II) Hexafluorophosphate

Feng-Mei Nie," Zhe-Ming Wang, b Yan-Mei Li," Yu-Fen Zhao" and Chun-Hua Yan b

"Bio-organic Phosphorus Chemistry Laboratory, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China, and ^bState Key Laboratory of Rare Earth Materials Chemistry and Applications, Department of Chemistry, Peking University, Beijing 100871, People's Republic of China. E-mail: tp-dch@mail.tsinghua.edu.cn

(Received 6 January 1998; accepted 4 August 1998)

Abstract

The Cu atom in the title complex, [N-(2-amino-ethyl-N)-1,2-ethylenediamine-N,N'] aqua(4-pyridine-carboxylato-N)copper(II) hexafluorophosphate, [Cu-(C₆H₄NO₂)(C₄H₁₃N₃)(H₂O)]PF₆, is coordinated in a square-pyramidal arrangement by three N atoms

The crystal structure of (I) comprises discrete [Cu(dien)(iso)(H₂O)]⁺ cations and hexafluorophosphate anions (Fig. 1). The coordination polyhedron of the Cu atom is a square pyramid whose base is formed by three N atoms from the amine ligand and one pyridine N atom from isonicotinate. A coordinated water molecule occupies the apex of the pyramid with a Cu-O distance of 2.316 (2) Å. The Cu atom lies 0.199 (1) Å above the mean plane defined by the four basal N atoms. This is in good agreement with the situation found in most square-pyramidal structures where the Cu atom is lifted ca 0.2 Å towards the apex of the pyramid (Hathaway & Billing, 1970). The Cu-N bond lengths to dien fall in the range 2.005 (2)-2.017 (2) Å. Among these, that from the Cu atom to the secondary N atom of the amine ligand is the shortest, as was found by Sato et al. (1986) and Hu et al. (1997). The Cu to pyridine N (Cu-N1) bond length is 2.016(2) Å. This is comparable to the Cu-Niso bond length found in the square-planar coordinated Cu^{II} complex [Cu(iso)₂(H₂O)₂].2H₂O (2.004 Å; Okabe et al., 1993). The dihedral angle between the pyridine ring plane and the basal plane of the square pyramid is $61.49(7)^{\circ}$. The hexafluorophosphate anion is below the square pyramid and F1 is close to the Cu atom at a distance of 2.969(2) Å. An extensive hydrogenbonding network is present in the crystal, with hydro-